The benefit of group sparsity
نویسندگان
چکیده
منابع مشابه
The Benefit of Group Sparsity
This paper develops a theory for group Lasso using a concept called strong group sparsity. Our result shows that group Lasso is superior to standard Lasso for strongly group-sparse signals. This provides a convincing theoretical justification for using group sparse regularization when the underlying group structure is consistent with the data. Moreover, the theory predicts some limitations of t...
متن کاملThe benefit of tree sparsity in accelerated MRI
The wavelet coefficients of a 2D natural image are not only approximately sparse with a large number of coefficients tend to be zeros, but also yield a quadtree structure. According to structured sparsity theory, the required measurement bounds for compressive sensing reconstruction can be reduced to O(K+log(N/K)) by exploiting the tree structure rather than O(K+Klog(N/K)) for standard K-sparse...
متن کاملThe Bene t of Group Sparsity
This paper develops a theory for group Lasso using a concept called strong group sparsity. Our result shows that group Lasso is superior to standard Lasso for strongly group-sparse signals. This provides a convincing theoretical justi cation for using group sparse regularization when the underlying group structure is consistent with the data. Moreover, the theory predicts some limitations of th...
متن کاملBayesian CCA via Group Sparsity
Bayesian treatments of Canonical Correlation Analysis (CCA) -type latent variable models have been recently proposed for coping with overfitting in small sample sizes, as well as for producing factorizations of the data sources into correlated and non-shared effects. However, all of the current implementations of Bayesian CCA and its extensions are computationally inefficient for highdimensiona...
متن کاملStructured Sparsity with Group-Graph Regularization
In many learning tasks with structural properties, structural sparsity methods help induce sparse models, usually leading to better interpretability and higher generalization performance. One popular approach is to use group sparsity regularization that enforces sparsity on the clustered groups of features, while another popular approach is to adopt graph sparsity regularization that considers ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Statistics
سال: 2010
ISSN: 0090-5364
DOI: 10.1214/09-aos778